Radiative Forcing of Saharan Dust: GOCART Model Simulations Compared with ERBE Data
نویسندگان
چکیده
This study uses information on Saharan aerosol from a dust transport model to calculate radiative forcing values. The transport model is driven by assimilated meteorological fields from the Goddard Earth Observing System Data Assimilation System. The model produces global three-dimensional dust spatial information for four different mineral aerosol sizes. These dust fields are input to an offline radiative transfer calculation to obtain the direct radiative forcing due to the dust fields. These estimates of the shortwave reduction of radiation at the top of the atmosphere (TOA) compare reasonably well with the TOA reductions derived from Earth Radiation Budget Experiment (ERBE) and Total Ozone Mapping Spectrometer (TOMS) satellite data. The longwave radiation also agrees with the observations; however, potential errors in the assimilated temperatures complicate the comparison. Depending on the assumptions used in the calculation and the dust loading, the summertime forcing ranges from 0 to 218 W m22 over ocean and from 0 to 120 W m22 over land. Increments are terms in the assimilation general circulation model (GCM) equations that force the model toward observations. They are differences between the observed analyses and the GCM forecasts. Off west Africa the analysis temperature increments produced by the assimilation system show patterns that are consistent with the dust spatial distribution. It is not believed that radiative heating of dust is influencing the increments. Instead, it is suspected that dust is affecting the Television Infrared Observational Satellite (TIROS) Operational Vertical Sounder (TOVS) satellite temperature retrievals that provide the basis of the assimilated temperatures used by the model.
منابع مشابه
The Spatial Distribution of Mineral Dust and its Shortwave Radiative Forcing Over North Africa: Modeling Sensitivities to Dust Emissions and Aerosol Size Treatments
A fully coupled meteorology-chemistry-aerosol model (WRF-Chem) is applied to simulate mineral dust and its shortwave (SW) radiative forcing over North Africa. Two dust emission schemes (GOCART and DUSTRAN) and two aerosol models (MADE/SORGAM and MOSAIC) are adopted in simulations to investigate the modeling sensitivities to dust emissions and aerosol size treatments. The modeled size distributi...
متن کاملDirect radiative effect of aerosols as determined from a combination of MODIS retrievals and GOCART simulations
[1] The aerosol direct solar effect under clear sky is assessed by (1) combining multiple aerosol characterizations and (2) using the satellite-retrieved land surface albedo. The aerosol characterization is made through an integration of the MODerate resolution Imaging Spectroradiometer (MODIS) retrievals and the Georgia Tech/Goddard Global Ozone Chemistry Aerosol Radiation and Transport (GOCAR...
متن کاملLongwave radiative forcing of Saharan dust aerosols estimated from MODIS, MISR, and CERES observations on Terra
[1] Using observations from the Multi-angle Imaging Spectroradiometer (MISR), the Moderate Resolution Imaging Spectroradiometer (MODIS), and the Clouds and the Earth’s Radiant Energy System (CERES) instruments onboard the Terra satellite; we present a new technique for studying longwave (LW) radiative forcing of dust aerosols over the Saharan desert for cloud-free conditions. The monthly-mean L...
متن کاملDirect Insertion of MODIS Radiances in a Global Aerosol Transport Model
In this paper results are presented from a simple offline assimilation system that uses radiances from the Moderate Resolution Imaging Spectroradiometer (MODIS) channels that sense atmospheric aerosols over land and ocean. The MODIS information is directly inserted into the Goddard Chemistry and Aerosol Radiation Transport model (GOCART), which simulates the following five aerosol types: dust, ...
متن کاملShortwave direct radiative forcing of Saharan dust aerosols over the Atlantic Ocean
Using collocated Visible and Infrared Scanner (VIRS) and Clouds and the Earth’s Radiant Energy Budget Scanner (CERES) data on board the Tropical Rainfall Measuring Mission (TRMM) satellite, the instantaneous Shortwave Aerosol Radiative Forcing (SWARF) and daytime diurnally averaged SWARF at the top-of-atmosphere (TOA) are estimated for Saharan dust over the Atlantic Ocean (10‡N–25‡N, 30‡W–15‡W)...
متن کامل